Truncated order-6 octagonal tiling | |
---|---|
![]() Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic uniform tiling |
Vertex configuration | 6.16.16 |
Schläfli symbol | t{8,6} |
Wythoff symbol | 2 6 | 8 |
Coxeter diagram | ![]() ![]() ![]() ![]() ![]() |
Symmetry group | [8,6], (*862) |
Dual | Order-8 hexakis hexagonal tiling |
Properties | Vertex-transitive |
In geometry, the truncated order-6 octagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t{8,6}.
Uniform colorings
A secondary construction t{(8,8,3)} is called a truncated trioctaoctagonal tiling:
Symmetry
![](../I/Truncated_order-6_octagonal_tiling_with_mirrors.png.webp)
Truncated order-6 octagonal tiling with mirror lines, ![](../I/CDel_node_c1.png.webp)
![](../I/CDel_split1-88.png.webp)
![](../I/CDel_branch_c2.png.webp)
![](../I/CDel_node_c1.png.webp)
![](../I/CDel_split1-88.png.webp)
![](../I/CDel_branch_c2.png.webp)
The dual to this tiling represent the fundamental domains of [(8,8,3)] (*883) symmetry. There are 3 small index subgroup symmetries constructed from [(8,8,3)] by mirror removal and alternation. In these images fundamental domains are alternately colored black and white, and mirrors exist on the boundaries between colors.
The symmetry can be doubled as 862 symmetry by adding a mirror bisecting the fundamental domain.
Index | 1 | 2 | 6 | |
---|---|---|---|---|
Diagram | ![]() |
![]() |
![]() |
![]() |
Coxeter (orbifold) |
[(8,8,3)] = ![]() ![]() ![]() (*883) |
[(8,1+,8,3)] = ![]() ![]() ![]() ![]() ![]() ![]() ![]() (*4343) |
[(8,8,3+)] = ![]() ![]() ![]() (3*44) |
[(8,8,3*)] = ![]() ![]() ![]() ![]() (*444444) |
Direct subgroups | ||||
Index | 2 | 4 | 12 | |
Diagram | ![]() |
![]() |
![]() | |
Coxeter (orbifold) |
[(8,8,3)]+ = ![]() ![]() ![]() (883) |
[(8,8,3+)]+ = ![]() ![]() ![]() ![]() ![]() ![]() ![]() (4343) |
[(8,8,3*)]+ = ![]() ![]() ![]() ![]() (444444) |
Related polyhedra and tiling
Uniform octagonal/hexagonal tilings | ||||||
---|---|---|---|---|---|---|
Symmetry: [8,6], (*862) | ||||||
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
{8,6} | t{8,6} |
r{8,6} | 2t{8,6}=t{6,8} | 2r{8,6}={6,8} | rr{8,6} | tr{8,6} |
Uniform duals | ||||||
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
V86 | V6.16.16 | V(6.8)2 | V8.12.12 | V68 | V4.6.4.8 | V4.12.16 |
Alternations | ||||||
[1+,8,6] (*466) |
[8+,6] (8*3) |
[8,1+,6] (*4232) |
[8,6+] (6*4) |
[8,6,1+] (*883) |
[(8,6,2+)] (2*43) |
[8,6]+ (862) |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() |
![]() |
![]() | ||||
h{8,6} | s{8,6} | hr{8,6} | s{6,8} | h{6,8} | hrr{8,6} | sr{8,6} |
Alternation duals | ||||||
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() |
||||||
V(4.6)6 | V3.3.8.3.8.3 | V(3.4.4.4)2 | V3.4.3.4.3.6 | V(3.8)8 | V3.45 | V3.3.6.3.8 |
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
See also
![](../I/Commons-logo.svg.png.webp)
Wikimedia Commons has media related to Uniform tiling 6-16-16.
External links
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.