Mixed-anion compounds, heteroanionic materials or mixed-anion materials are chemical compounds containing cations and more than one kind of anion. The compounds contain a single phase, rather than just a mixture.[1][2]

Use in materials science

By having more than one anion, many more compounds can be made, and properties tuned to desirable values.[3] In terms of optics, properties include phosphorescence, photocatalysis,[4] laser damage threshold, refractive index, birefringence, absorption particularly in the ultraviolet or near infrared, non-linearity.[5] Mechanical properties can include ability to grow a large crystal, ability to form a thin layer, strength, or brittleness.

Thermal properties can include melting point, thermal stability, phase transition temperatures, thermal expansion coefficient.

For electrical properties, electric conductivity, band gap, superconducting transition temperature piezoelectricity, pyroelectricity, ferromagnetism, dielectric constant, charge-density wave transition can be adjusted.

Production

Many of the non-metals that could make mixed-anion compounds may have greatly varying volatilities. This makes it more difficult to combine the elements together. Compounds may be produced in a solid state reaction, by heating solids together, either in a vacuum or a gas. Common gases used include, oxygen, hydrogen, ammonia, chlorine, fluorine, hydrogen sulfide, or carbon disulfide. Soft chemical approaches to manufacture include solvothermal synthesis, or substituting atoms in a structure by others, including by water, oxygen, fluorine, or nitrogen. Teflon pouches can be used to separate different formulations. Thin film deposits can yield strained layers. High pressures can be used to prevent evaporation of volatiles. High pressure can result in different crystal forms, perhaps with higher coordination number.[1]

Kinds

Elemental

H
B BH B
C CHCB C
N NHNBNC N
O OHOBOCON O
F FHFBFCFNFO F
Si SiHSiBSiCSiNSiOSiF Si
P PHPBPCPNPOPFPSi P
S SHSBSCSNSOSFSSiSP S
Cl ClHClBClCClNClOClFClSiClPClS Cl
Ge GeHGeBGeCGeNGeOGeFGeSiGePGeSGeCl Ge
As AsHAsBAsCAsNAsOAsFAsSiAsPAsSAsClAsGe As
Se SeHSeBSeCSeNSeOSeFSeSiSePSeSSeClSeGeSeAs Se
Br BrHBrBBrCBrNBrOBrFBrSiBrPBrSBrClBrGeBrAsBrSe Br
Sb SbHSbBSbCSbNSbOSbFSbSiSbPSbSSbClSbGeSbAsSbSeSbBr Sb
Te TeHTeBTeCTeNTeOTeFTeSiTePTeSTeClTeGeTeAsTeSeTeBrTeSb Te
I IHIBICINIOIFISiIPISIClIGeIAsISeIBrISbITe I
Bi BiHBiBBiCBiNBiOBiFBiSiBiPBiSBiClBiGeBiAsBiSeBiBrBiSbBiTeBiI

Molecular anions

  • borohydride-chloride[8]
  • disulfide dithioorthovanadate[9]

Oxyanions

Fluoroanions

Mixed valency and oligomers

Some elements can form several kinds of anions, and compounds may exist with more than one. Examples include the iodate periodates,[10] sulfite sulfates, selenate selenites, tellurite tellurates, nitrate nitrites, phosphate phosphites, and arsenate arsenites.

These kinds also include different oligomeric forms such as phosphates or fluorotitanates, such as [Ti4F20]4- and [TiF5].[11]

Organic

  • borate acetate
  • oxalate formate

References

  1. 1 2 Kageyama, Hiroshi; Hayashi, Katsuro; Maeda, Kazuhiko; Attfield, J. Paul; Hiroi, Zenji; Rondinelli, James M.; Poeppelmeier, Kenneth R. (22 February 2018). "Expanding frontiers in materials chemistry and physics with multiple anions". Nature Communications. 9 (1): 772. Bibcode:2018NatCo...9..772K. doi:10.1038/s41467-018-02838-4. PMC 5823932. PMID 29472526.
  2. Kageyama, Hiroshi; Ogino, Hiraku; Hasegawa, Tetsuya (26 June 2023). Mixed Anion Compounds. Royal Society of Chemistry. ISBN 978-1839165122.
  3. Takeiri, Fumitaka; Kageyama, Hiroshi (15 December 2018). "Mixed-Anion Compounds: A New Trend in Solid State Chemistry". Nihon Kessho Gakkaishi. 60 (5–6): 240–245. Bibcode:2018NKG....60..240T. doi:10.5940/jcrsj.60.240.
  4. Maeda, Kazuhiko; Takeiri, Fumitaka; Kobayashi, Genki; Matsuishi, Satoru; Ogino, Hiraku; Ida, Shintaro; Mori, Takao; Uchimoto, Yoshiharu; Tanabe, Setsuhisa; Hasegawa, Tetsuya; Imanaka, Nobuhito; Kageyama, Hiroshi (15 January 2022). "Recent Progress on Mixed-Anion Materials for Energy Applications". Bulletin of the Chemical Society of Japan. 95 (1): 26–37. doi:10.1246/bcsj.20210351. S2CID 244141502.
  5. Li, Yan-Yan; Wang, Wen-Jing; Wang, Hui; Lin, Hua; Wu, Li-Ming (7 June 2019). "Mixed-Anion Inorganic Compounds: A Favorable Candidate for Infrared Nonlinear Optical Materials". Crystal Growth & Design. 19 (7): 4172–4192. doi:10.1021/acs.cgd.9b00358. S2CID 197213596.
  6. 1 2 Xiao, Jin-Rong; Yang, Si-Han; Feng, Fang; Xue, Huai-Guo; Guo, Sheng-Ping (September 2017). "A review of the structural chemistry and physical properties of metal chalcogenide halides". Coordination Chemistry Reviews. 347: 23–47. doi:10.1016/j.ccr.2017.06.010.
  7. Saparov, Bayrammurad; Singh, David J.; Garlea, Vasile O.; Sefat, Athena S. (8 July 2013). "Crystal, magnetic and electronic structures and properties of new BaMnPnF (Pn = As, Sb, Bi)". Scientific Reports. 3 (1): 2154. arXiv:1306.5182. Bibcode:2013NatSR...3E2154S. doi:10.1038/srep02154. PMC 6504822. PMID 23831607.
  8. Ravnsbaek, Dorthe B.; Sørensen, Lise H.; Filinchuk, Yaroslav; Reed, Daniel; Book, David; Jakobsen, Hans J.; Besenbacher, Flemming; Skibsted, Jørgen; Jensen, Torben R. (April 2010). "Mixed-Anion and Mixed-Cation Borohydride KZn(BH4)Cl2: Synthesis, Structure and Thermal Decomposition" (PDF). European Journal of Inorganic Chemistry. 2010 (11): 1608–1612. doi:10.1002/ejic.201000119.
  9. Almoussawi, Batoul; Huvé, Marielle; Dupray, Valérie; Clevers, Simon; Duffort, Victor; Mentré, Olivier; Roussel, Pascal; Arevalo-Lopez, Angel M.; Kabbour, Houria (22 April 2020). "Oxysulfide Ba5(VO2S2)2(S2)2 Combining Disulfide Channels and Mixed-Anion Tetrahedra and Its Third-Harmonic-Generation Properties" (PDF). Inorganic Chemistry. 59 (9): 5907–5917. doi:10.1021/acs.inorgchem.9b03674. PMID 32319754. S2CID 216073355.
  10. Sun, Jun; Abudouwufu, Tushagu; Jin, Congcong; Guo, Zhiyong; Zhang, Min (17 December 2021). "K 6 (IO 6 H 4)(HI 2 O 6)(HIO 3) 2 (IO 3) 4 ·2H 2 O: A Case of Iodate with Coexisting [I 5+ O 3] and [I 7+ O 6] Units". Inorganic Chemistry. 61 (1): 688–692. doi:10.1021/acs.inorgchem.1c03436. PMID 34919392. S2CID 245278633.
  11. Shlyapnikov, Igor M.; Goreshnik, Evgeny A.; Mazej, Zoran (31 December 2018). "Guanidinium Perfluoridotitanate(IV) Compounds: Structural Determination of an Oligomeric [Ti6F27]3– Anion, and an Example of a Mixed-Anion Salt Containing Two Different Fluoridotitanate(IV) Anions". European Journal of Inorganic Chemistry. 2018 (48): 5246–5257. doi:10.1002/ejic.201801207. S2CID 104344701.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.