A centered nonagonal number (or centered enneagonal number) is a centered figurate number that represents a nonagon with a dot in the center and all other dots surrounding the center dot in successive nonagonal layers. The centered nonagonal number for n layers is given by the formula[1]

Multiplying the (n - 1)th triangular number by 9 and then adding 1 yields the nth centered nonagonal number, but centered nonagonal numbers have an even simpler relation to triangular numbers: every third triangular number (the 1st, 4th, 7th, etc.) is also a centered nonagonal number.[1]

Thus, the first few centered nonagonal numbers are[1]

1, 10, 28, 55, 91, 136, 190, 253, 325, 406, 496, 595, 703, 820, 946.

The list above includes the perfect numbers 28 and 496. All even perfect numbers are triangular numbers whose index is an odd Mersenne prime.[2] Since every Mersenne prime greater than 3 is congruent to 1 modulo 3, it follows that every even perfect number greater than 6 is a centered nonagonal number.

In 1850, Sir Frederick Pollock conjectured that every natural number is the sum of at most eleven centered nonagonal numbers.[3] Pollock's conjecture was confirmed as true in 2023.[4]

Congruence Relations

  • All centered nonagonal numbers are congruent to 1 mod 3.
    • Therefore the sum of any 3 centered nonagonal numbers and the difference of any two centered nonagonal numbers are divisible by 3.

See also

References

  1. 1 2 3 Sloane, N. J. A. (ed.). "Sequence A060544 (Centered 9-gonal (also known as nonagonal or enneagonal) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  2. Koshy, Thomas (2014), Pell and Pell–Lucas Numbers with Applications, Springer, p. 90, ISBN 9781461484899.
  3. Dickson, L. E. (2005), Diophantine Analysis, History of the Theory of Numbers, vol. 2, New York: Dover, pp. 22–23, ISBN 9780821819357.
  4. Kureš, Miroslav (October 27, 2023). "A Proof of Pollock's Conjecture on Centered Nonagonal Numbers". The Mathematical Intelligencer. doi:10.1007/s00283-023-10307-0. ISSN 0343-6993.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.