Map of hotspots. Iceland is number 14.

The geology of Iceland is unique and of particular interest to geologists. Iceland lies on the divergent boundary between the Eurasian plate and the North American plate. It also lies above a hotspot, the Iceland plume. The plume is believed to have caused the formation of Iceland itself, the island first appearing over the ocean surface about 16 to 18 million years ago.[1][2] The result is an island characterized by repeated volcanism and geothermal phenomena such as geysers.

The eruption of Laki in 1783 caused much devastation and loss of life, leading to a famine that killed about 25% of the island's population[3] and resulted in a drop in global temperatures, as sulfur dioxide was spewed into the Northern Hemisphere. This caused crop failures in Europe and may have caused droughts in India. The eruption has been estimated to have killed over six million people globally.[4]

Between 1963 and 1967, the new island of Surtsey was created off the southwest coast by a volcanic eruption.

Geologic history

The opening of the North Atlantic and the origin of Iceland

Iceland is located above the Mid-Atlantic Ridge. Some scientists believe the hotspot beneath Iceland could have contributed to the rifting of the supercontinent Pangaea and the subsequent formation of the North Atlantic Ocean. Igneous rocks which arose from this hotspot have been found on both sides of the Mid-Atlantic Ridge, which originated 57–53 million years ago ("Ma"), around the time North America and Eurasia separated and sea floor spreading began in the Northeast Atlantic.[5] Geologists can determine plate motion relative to the Icelandic hotspot by examining igneous rocks throughout the Northern Atlantic region. This is possible because certain rocks attributable to hotspot volcanism can be interpreted as volcanic traces left by the Iceland hotspot.[5] By assuming that the hotspot is stationary, geologists use what is called the "hotspot frame of reference" to gather plate motion estimates and to create maps of plate movement on the surface of the Earth relative to a stationary hotspot.

Most researchers of plate motion agree that the Iceland hotspot was probably located beneath Greenland for a period of time. As the North Atlantic Ocean continued to spread apart, Greenland was located to the southeast of the Iceland hotspot and likely moved over it 70–40 Ma.[6] Some research using new plate motion data gathered from hotspot reference frames from around the world suggests that the Iceland hotspot's path differs from that estimated from older investigations. Many older rocks (dated 75–70 Ma) located throughout the area to the west are not only located near hypothesized Iceland hotspot paths but are also attributable to hotspot volcanism. This implies that the Iceland hotspot may be much older than the earliest rifting of what is now the northernmost Northeast Atlantic. If this is true, then much of the rifting in the North Atlantic was likely caused by thinning and bulging of the crust as opposed to the more direct influence of the mantle plume which sustains the Iceland hotspot.[5]

In other scientific work on the path of the Iceland hotspot, no such westward track toward Canada (where the aforementioned older igneous rocks exist) can be detected, which implies that the older igneous rocks found in the Northern Atlantic may not have originated from the hotspot.[6][7] Although the exact path of the Iceland hotspot is debated, a preponderance of geophysical evidence, such as the geothermal heat flux over Greenland, shows that the hotspot likely moved below Greenland around 80–50 Ma.[7]

Around 60–50 Ma, when the hotspot was located near the eastern coast of Greenland and the Mid-Atlantic Ridge, volcanism, perhaps generated by the Iceland hotspot, connected the Eurasian and North American continents and formed a land bridge between the continents while they spread apart. This feature is known as the Greenland Scotland Transverse Ridge, and it now lies below sea level.[8] About 36 Ma, the Iceland hotspot was fully in contact with the oceanic crust and possibly fed segments of the Mid-Atlantic Ridge which continued to form the oldest rocks located directly to the east and west of modern-day Iceland. The oldest sub-aerial rocks in modern-day Iceland are from 16.5 Ma.[5][8]

Although most scientists believe Iceland is both in contact with a mantle plume, and being actively split apart by the Mid-Atlantic Ridge, some other seismological and geophysical evidence calls the previously discussed mantle plume/hotspot assumption into question. Some geologists believe there is not enough definitive evidence to suggest a mantle plume exists beneath Iceland because sea floor heat flow through the lithosphere surrounding Iceland does not deviate from normal oceanic lithosphere heat flow that is uninfluenced by a plume.[9] This cold crust hypothesis directly opposes the idea that Iceland is located above a hot mantle plume. Additional evidence indicates that seismic waves created under Iceland do not behave as expected based on other seismic surveys near hypothesized mantle plumes.[10] As it is one of the only places where sea floor spreading can be observed on land, and where there is evidence for a mantle plume, the geological history of Iceland will likely remain a popular area of research.

Glaciations

Holocene changes and volcanism

Rock types

Volcanic deposits

Intrusive rocks

Sedimentary deposits

One of the rare examples of sedimentary rocks in Iceland is the sequence of marine and non-marine sediments present on the Tjörnes Peninsula in northern Iceland. These Pliocene and late Pleistocene deposits are composed of silt and sandstones, with fossils preserved in the lower layers.[11] The primary fossil types found in the Tjörnes beds are marine mollusk shells and plant remains (lignite).

  • Vegetational changes
  • Past climate
  • Origin of the strata
  • Fossil preservation

Active tectonics

Ögmundarhraun lava field, Road 427, Reykjanes Peninsula

The tectonic structure of Iceland is characterized by various seismically and volcanically active centers. Iceland is bordered to the south by the Reykjanes Ridge segment of the Mid-Atlantic Ridge and to the north by the Kolbeinsey Ridge. Rifting in the southern part of Iceland is focused in two main parallel rift zones. The Reykjanes Peninsula Rift in SW Iceland is the landward continuation of the Reykjanes Ridge that connects to the Western Volcanic Zone (WVZ). The more active Eastern Volcanic Zone (EVZ) represents a rift jump, although it is unclear how the eastward propagation of the main rifting activity has occurred.[12] The offset between the WVZ and the EVZ is accommodated by the South Iceland Seismic Zone, an area characterized by high earthquake activity. The EVZ transitions northward into the Northern Volcanic Zone (NVZ), which contains Krafla volcano. The NVZ is connected to the Kolbeinsey Ridge by the Tjörnes Fracture Zone, another major center of seismicity and deformation.

A great deal of volcanic activity was occurring in the Reykjanes Peninsula in 2020 and into 2021, after nearly 800 years of inactivity. After the eruption of the Fagradalsfjall volcano on 19 March 2021, National Geographic's experts predicted that this "may mark the start of decades of volcanic activity". The eruption was small leading to a prediction that this volcano was unlikely to threaten "any population centers".[13]

On 10 July 2023 at 16:40 UTC, a fissure eruption began adjacent to the summit of Litli-Hrútur.[14] After weeks of earthquake unrest and the evacuation of the town of Grindavik, a new fissure eruption began in the Eldvörp–Svartsengi area on 18th December 2023.[15]

Modern glaciers

Glaciers cover about 11% of Iceland; easily the largest of these is Vatnajökull. Icelandic glaciers have generally been retreating over the past 100 years. Vatnajökull has been described as one of the more sensitive glaciers to climate change[16] and has lost as much as 10% of its volume.[17]

As many glaciers overlie active volcanoes, subglacial eruptions can pose hazards due to sudden floods produced by glacial meltwater, known as jökulhlaup. Another subglacial volcanic hazard is the phreatomagmatic eruption. In the case of Iceland, this type of eruption is the cause of massive plumes of volcanic ash that migrate to Europe and disrupt air traffic.[18] Historically these explosive eruptions have had other impacts on human civilization as well, including acid rain and significant changes in weather patterns.[16] Grímsvötn – a major sub-glacial volcano located beneath the Vatnajökull ice cap – is prone to this type of eruption.[19]

Human impact and natural catastrophes

Deforestation

Deforestation of Iceland has been a result of human impact and the climate.[20] Since the island’s settlement in the 7th century, the native forests and woodlands have been cut down for fuel and for timber.[20] Upon settlement, it had a rich environment, but it was fragile. After consistent logging and resource exploitation, only about 1.9% of the country is a forest or woodland, mostly made up of small birch and willows.[20][21] There have been projects to improve the nation's woodland through the Icelandic Forestry Service.[20][21]

Soil erosion

Soil erosion is a major environmental degradation issue for Iceland with 39% of the country's land being categorized as having extensive soil erosion.[22] The country’s woodlands and forests have been exploited for fuel and timber and as settlements grew, livestock populations increased and agriculture expanded.[21] Many natural and anthropogenic causes have made Iceland a scarce landscape made up of grasses, moss, and short, thin trees, such as pine and birch.[21] Its lack of vegetation cover has left the soil more vulnerable to weathering and natural catastrophe events, such as volcanic activity and landslides.[22][20] Iceland’s cold climate slows plant growth, leaving the soil susceptible to the impact of strong winds.[20] Soil erosion, and land degradation in general, decreases biodiversity and the health of the surrounding ecosystems.[20]

The government of Iceland and its people have undertaken many soil restoration projects. They created the Soil Conservation Service of Iceland (SCS) in 1909 which works on ecosystem restoration projects.[22][20] In 2007, they organized the Hekluskógar project where local landowners and farmers were encouraged to plant native birch and willows on their lands.[23] By 2010 over 2.3 million seedlings were planted in small inlets around the country.[23]

Overgrazing

Soil erosion rates are also increased by overgrazing. Sheep are one of the primary livestock of Iceland and have been there for centuries.[20] During this time, the sheep have grazed on the native vegetation and began to exhaust the local resources as the sheep populations grew.[20] A lack of preventative policy led to overgrazing in multiple areas across the country. The persistent issue of land degradation caused by overgrazing and land exploitation remains a pressing concern.[20]

Other

See also

References

  1. Tobias Weisenberger (2013). "Introduction to the geology of Iceland".
  2. "Catalogue of the Active Volcanoes of the World, Vol. 24" (PDF). Archived from the original (PDF) on 2013-11-13. Retrieved 2012-08-01.
  3. Gunnar Karlsson (2000), Iceland's 1100 Years, p. 181
  4. How The Earth Was Made: The Age of Earth (video), History.com
  5. 1 2 3 4 Müller, R. Dietmar; Royer, Jean-Yves; Lawver, Lawrence A. (1993-03-01). "Revised plate motions relative to the hotspots from combined Atlantic and Indian Ocean hotspot tracks". Geology. 21 (3): 275. Bibcode:1993Geo....21..275D. doi:10.1130/0091-7613(1993)021<0275:rpmrtt>2.3.co;2. ISSN 0091-7613.
  6. 1 2 O'Neill, Craig; Müller, Dietmar; Steinberger, Bernhard (April 2005). "On the uncertainties in hot spot reconstructions and the significance of moving hot spot reference frames". Geochemistry, Geophysics, Geosystems. 6 (4): n/a. Bibcode:2005GGG.....6.4003O. doi:10.1029/2004gc000784. ISSN 1525-2027.
  7. 1 2 Martos, Yasmina M.; Jordan, Tom A.; Catalán, Manuel; Jordan, Thomas M.; Bamber, Jonathan L.; Vaughan, David G. (2018-08-24). "Geothermal Heat Flux Reveals the Iceland Hotspot Track Underneath Greenland" (PDF). Geophysical Research Letters. 45 (16): 8214–8222. Bibcode:2018GeoRL..45.8214M. doi:10.1029/2018gl078289. ISSN 0094-8276. S2CID 134080119.
  8. 1 2 Denk, Thomas; Grímsson, Friðgeir; Zetter, Reinhard; Símonarson, Leifur (2011-02-23), Introduction to the Nature and Geology of Iceland, 35, retrieved 2018-10-16
  9. Stein, Carol A; Stein, Seth (February 2003). "Mantle plumes: heat-flow near Iceland". Astronomy and Geophysics. 44 (1): 1.08–1.10. doi:10.1046/j.1468-4004.2003.44108.x. ISSN 1366-8781.
  10. Foulger, G. R.; Du, Z.; Julian, B. R. (November 2003). "Icelandic-type crust". Geophysical Journal International. 155 (2): 567–590. Bibcode:2003GeoJI.155..567F. doi:10.1046/j.1365-246x.2003.02056.x. ISSN 0956-540X. S2CID 53983210.
  11. Símonarson, L. A., & Eiríksson, J. (2008). "Tjörnes-Pliocene and Pleistocene sediments and faunas". Jökull. 58: 331–342. doi:10.33799/jokull2008.58.331. S2CID 257224547.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  12. Einarsson, Páll (2008). "Plate boundaries, rifts and transforms in Iceland" (PDF). Jökull. 58: 35–58. doi:10.33799/jokull2008.58.035. S2CID 55021384.
  13. "Eruption in Iceland may mark the start of decades of volcanic activity". Archived from the original on March 22, 2021. Retrieved 27 March 2021.
  14. "Latest news on the volcanic eruption on the Reykjanes Peninula". Icelandic Meteorological office. 2023-07-10. Retrieved 2023-07-13.
  15. "Iceland volcano erupts on Reykjanes peninsula". BBC. 2023-12-19. Retrieved 2024-01-09.
  16. 1 2 Baldursson, Snorri; Guðnason, Jónas; Hannesdóttir, Hrafnhildur; Þórðarson, Þorvaldur (2018). "Nomination of Vatnajökull National Park dynamic nature of fire and ice for inclusion in the World Heritage List" (PDF). {{cite journal}}: Cite journal requires |journal= (help)
  17. Björnsson, H., & Pálsson, F. (2008). "Icelandic glaciers" (PDF). Jökull. 58: 365–386. doi:10.33799/jokull2008.58.365. S2CID 257225342.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  18. Langmann, Baerbel; Folch, Arnau; Hensch, Martin; Matthias, Volker (2012). "Volcanic ash over Europe during the eruption of Eyjafjallajökull on Iceland, April–May 2010". Atmospheric Environment. 48: 1–8. Bibcode:2012AtmEn..48....1L. doi:10.1016/j.atmosenv.2011.03.054. ISSN 1352-2310.
  19. Jude-Eton, T. C.; Thordarson, T.; Gudmundsson, M. T.; Oddsson, B. (2012-03-08). "Dynamics, stratigraphy and proximal dispersal of supraglacial tephra during the ice-confined 2004 eruption at Grímsvötn Volcano, Iceland". Bulletin of Volcanology. 74 (5): 1057–1082. Bibcode:2012BVol...74.1057J. doi:10.1007/s00445-012-0583-3. ISSN 0258-8900. S2CID 128678427.
  20. 1 2 3 4 5 6 7 8 9 10 11 Soils, Society, and Global Change. Italy: United Nations University, Soil Conservation Service Icleand, JRC European Commission, IES. 2009. ISBN 978-92-79-11775-6.
  21. 1 2 3 4 "Forestry". www.government.is. Retrieved 2023-12-03.
  22. 1 2 3 "Soil Conservation". Government of Iceland. Retrieved 10 November 2023.
  23. 1 2 "The Mt. Hekla afforestation project". Hekluskógar. 2015-04-15. Retrieved 2023-12-03.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.