The following is a list of intervals of extended meantone temperament. These intervals constitute the standard vocabulary of intervals for the Western common practice era. Here 12 EDO refers to the size of the interval in the temperament with 12 equal divisions of the octave, which is the most common meantone temperament in the modern era, 19 EDO to 19 equal temperament, 31 EDO to 31 equal temperament, and 50 EDO to 50 equal temperament. Note that for brevity, several of the intervals for 31 EDO and 50 EDO are omitted from the table.

R.W. Duffin writes:

"Specifying that the major semitone should be 3/ 2  the minor semitone [a 3:2 ratio] creates a 31 note division of the octave, which, in turn, closely corresponds to extended-quarter-comma meantone ... the 5:4 ratio [whose] extended-sixth-comma meantone corresponds to the 55 division ... extended-fifth-comma meantone [corresponds to] the 43 division of the octave [in which the] ratio of the major to minor semitone is 4:3."

The other meantone correspondencies: a 1:1 ratio produces a 12 division

(1/ 11  comma meantone)... "2:1 [which] results in a 19 division
(1/ 3  comma meantone) ... 5:3, which results in a 50 division"
(2/ 7  comma meantone) are derived from these statements.[1]

[Brackets added for readability.]

The column of ratios gives a ratio or ratios approximated by the interval in septimal meantone temperament. An augmented interval is increased by a chromatic semitone, and a diminished interval decreased.

12 EDO
(≈1/ 11  c)
Quarter-
comma
19 EDO
(≈1/ 3 c)
31 EDO
(≈1/ 4 c)
50 EDO
(≈2/ 7 c)
Note
(from C)
Roman
numeral
Name Classic
ratios
Septimal
ratios
stepscentscentsstepscentsstepscentsstepscents
0
0
0.00
0
0.00
0
0.00
0
0
C
Unison 1:1
41.06
1
63.16
1
38.71
2
48
Ddouble flat
double flatII
Diminished second 128:125 36:35
1
100
76.05
2
77.42
3
72
C
I
Chromatic semitone 25:24 21:20
117.11
2
126.32
3
116.13
5
120
D
II
Minor second 16:15, 27:25 15:14
2
200
193.16
3
189.47
5
193.55
8
192
D
II
Whole tone9:8, 10:9
234.22
4
252.63
6
232.26
10
240
Edouble flat
double flatIII
Diminished third144:1258:7
3
300
269.21
7
270.97
11
264
D
II
Augmented second75:64, 125:1087:6
310.26
5
315.79
8
309.68
13
312
E
III
Minor third6:5, 32:27
4
400
386.31
6
378.95
10
387.10
16
384
E
III
Major third5:4
427.37
7
442.11
11
425.81
18
432
F
IV
Diminished fourth32:259:7
5
500
462.36
12
464.52
19
456
E
III
Augmented third125:9621:16
503.42
8
505.26
13
503.23
21
504
F
IV
Perfect fourth4:3, 27:20
6
600
579.47
9
568.42
15
580.65
24
576
F
IV
Augmented fourth25:18, 45:327:5
620.53
10
631.58
16
619.35
26
624
G
V
Diminished fifth36:25, 64:4510:7
7
700
696.58
11
694.74
18
696.77
29
696
G
V
Perfect fifth3:2, 40:27
737.64
12
757.89
19
735.48
31
744
Adouble flat
double flatVI
Diminished sixth192:12532:21
8
800
772.63
20
774.19
32
768
G
V
Augmented fifth25:1614:9
813.69
13
821.05
21
812.90
34
816
A
VI
Minor sixth8:5
9
900
889.74
14
884.21
23
890.32
37
888
A
Major sixth5:3, 27:16
930.79
15
947.37
24
929.03
39
936
Bdouble flat
double flatVII
Diminished seventh128:75, 216:12512:7
10
1000
965.78
25
967.74
40
960
A
VI
Augmented sixth125:727:4
1006.84
16
1010.53
26
1006.45
42
1008
B
VII
Minor seventh9:5, 16:9
11
1100
1082.89
17
1073.68
28
1083.87
45
1080
VII
Major seventh15:8, 50:2728:15
1123.95
18
1136.84
29
1122.58
47
1128
C
VIII
Diminished octave48:2540:21
12
1200
1158.94
30
1161.29
48
1152
B
VII
Augmented seventh125:6435:18
1200.00
19
1200.00
31
1200.00
50
1200
VIII
Octave2:1

See also

References

  1. Duffin, R.W. How Equal Temperament Ruined Harmony (and why you should care). pp. 91–92.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.